
Mechanical Systems and Signal Processing 216 (2024) 111462

Available online 27 April 2024
0888-3270/© 2024 Elsevier Ltd. All rights reserved.

Twist compensated, high accuracy and dynamic fiber optic shape 
sensing based on phase demodulation in optical frequency 
domain reflectometry 

Sheng Li a,b,c,1, Qingrui Li a,b,c,1, Zhenyang Ding a,b,c,*, Kun Liu a,b,c, 
Huafang Wang a,b,c, Peidong Hua a,b,c, Haohan Guo a,b,c, Teng Zhang a,b,c, Ji Liu a,b,c, 
Junfeng Jiang a,b,c, Tiegen Liu a,b,c 

a School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China 
b Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin 300072, China 
c Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin 300072, China   

A R T I C L E  I N F O   

Communicated by Yaguo Lei  

Keywords: 
Distributed optical fiber sensing 
Optical frequency domain reflectometry 
Phase demodulation 
Shape sensing 
Twist compensation 

A B S T R A C T   

We present a twist compensated, high accuracy and dynamic fiber optic shape sensing based on 
phase demodulation in Optical Frequency Domain Reflectometry (OFDR) by using multiple single 
core fiber based sensor (MFS). A dynamic strain sensing is realized by tracking the optical phase 
in OFDR and combining with the phase de-hopping filtering algorithm, and the sensing spatial 
resolution reaches 45 μm. In addition, in order to eliminate the influence of external twist and 
fluctuation of inherent spin on the shape reconstruction results, we propose an external twist 
compensation method and inherent spin rate calibration method, respectively. Finally, we use a 
circle segment method to reconstruct a 3D shape of MFS. The experimental results show that the 
reconstruction accuracies by the proposed external twist compensation and inherent spin rate 
calibration methods increase over 18 times and 20 times than those without these two methods, 
respectively. At the same time, comparing with the traditional cross-correlation-based method, 
we find that the proposed phase demodulation method has a similar reconstruction accuracy, the 
maximum reconstruction error is 0.61 %, whereas the shape reconstruction speed is improved by 
nearly 10 times. This is of great significance for the application of FOSS, which can be used for 
dynamic shape sensing such as intelligent soft robots, surgical robot and etc.   

1. Introduction 

Fiber Optic Shape Sensing (FOSS) is an innovative optical fiber sensing technology that uses a fiber optic cable to continuously track 
the 3D shape and position of a dynamic object in real-time without visual contact [1]. FOSS plays an important role in the fields of civil 
[2], mechanical [3] and aerospace engineering [4], biomedicine and medicine [5], for applications such as the structural health 
monitoring of civil structures and infrastructures, reconstruction of the displacement of wings in the aircraft, tracking robots and 
medical instruments inside the human body. It is especially important to track the shape position of dynamic objects without visual 
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contact. 
A considerable research effort has been dedicated to FOSS and made a lot of achievements in the last twenty years, most of them use 

fiber Bragg grating (FBG) [6–13]. However, FBG cannot realize truly distributed sensing and its poor sensing spatial resolution limits 
its further application in shape sensing. In contrast, distributed strain sensing technology based on Optical Frequency Domain 
Reflection (OFDR) has become one of the most potential realization methods of shape sensing with its advantages of high sensing 
spatial resolution and high sensitivity [14]. However, the reported OFDR-based shape sensing methods are all based on the traditional 
cross-correlation principle [15–17], which results in the deterioration of sensing spatial resolution and large calculation burden due to 
sliding window and cross-correlation processing. Therefore, a demodulation method of OFDR based on optical phase tracking is 
proposed and applied to high-speed dynamic strain measurement. Kreger et al. demonstrated an optical phase-based vibration 
detection and mapping technique using data from a commercial OFDR-based fiber sensing system [18]. Based on this, Wang et al. 
present a distributed high sensitivity static strain sensing method based on differential relative phase in OFDR [19]. Zhao et al. 
proposed a robust unwinding phase method based on density distribution to obtain low-noise unwinding phase [20]. However, lit
eratures on dynamic shape sensing by tracking light phase changes is limited. Recently, Fu et al. demonstrated an optical fiber φ-OFDR 
shape sensor by using femtosecond-laser-induced permanent scatter array (PS array) multicore fiber (MCF) [21]. However, this paper 
ignored the effect of twist on shape sensing, and the spatial resolution dose not reach the theoretical sensing spatial resolution in OFDR 
due to the windowing smoothing process in phase demodulation. 

Usually, the sensor in FOSS can be divided into two types: one is optical multicore fiber (MCF) [22–24] and the other is multiple 
single core fiber based sensor (MFS) [6,7,25]. MCF is a special fiber with multiple cores embedded in a common cladding, its ad
vantages are high flexibility and strong embedding ability, but the small core spacing results in a low response sensitivity to bending 
and twisting. MFS is formed by several single-core optical fibers molded with epoxy resin [6] or fixed to a bracket [7,25]. This 
configuration ensures a larger core spacing and improves the measurement accuracy of curvature and twist. In addition, MFS does not 
require additional fan-in/fan-out devices to realize the query of each fiber. The disadvantage of MSF is that the diameter of MSF is 
slightly larger than MCF. Due to the high flexibility, FOSSs are oftentimes subject to twisting that generates significant errors in shape 
sensing. Xu et al. presented a curvature, torsion, and force sensing based on concentric tube structures with helically wrapped FBG 
sensors [26]. The characteristic of this sensing structure with a large diameter allows it sensitive to torsion and bending. Moreover, due 
to the high stiffness of the sensor, the influence of axial strain caused by temperature or tension on shape reconstruction is not 
considered in the model. Therefore, this model between curvature, torsion, and force is not suitable for ultra-fine flexible MFS with a 
small diameter. Askins et al. proposed a method to estimate fiber twist using the twisted multicore fiber grating arrays [27]. The 
manufacturing process of twisted MCF is constantly being improved [15,28]. Floris et al. first assessed the performance of a twisted 
MCF-based shape sensor in sensing twisting and proposed a theoretical method based on Saint-Venant’s Torsion Theory [29]. Yin et al. 
developed a twist model based on spun MCF and applied it to a distributed directional torsion sensor [17]. However, most of the 
current reports on twist are for MCF, and this model is not suitable for MFS because the central core fiber will also produce strain 
during twisting process. In fact, the twist calculation method is different for MCF and MFS [30,31]. The cost of MFS with inherent spin 
and continuous grating is relatively lower than MCF. MFS has also been applied in commercial product of FOSS [32]. Therefore, it is 
necessary to establish a new twist compensation model based on MFS. In addition, the instability of the inherent spin rate of spun fiber 
during the manufacturing will also have a great impact on the shape reconstruction results. Especially for MFS, the inherent spin rate 
cannot be guaranteed during the molding process. Most of the recent approaches for shape sensing neglect this phenomenon. 

In this paper, a twist compensated, high precision and dynamic fiber shape sensing technology based on OFDR phase demodulation 
is implemented. Firstly, we propose a phase de-hopping filtering algorithm to realize the differential phase strain demodulation with 
high sensitivity and high spatial resolution, and the spatial resolution of sensing reaches 45 μm. Secondly, we set up a twist 
compensation model for MFS based on the strain relationship of each fiber. In addition, for the influence of the fluctuation of the 
inherent spin rate on the shape reconstruction results, we propose a calibration method of the inherent spin rate in MFS, which further 
improves the shape reconstruction accuracy. The experiment results show that the reconstruction accuracies by the proposed external 
twist compensation and inherent spin rate calibration methods increase over 18 times and 20 times than those without these two 
methods, respectively. Finally, we compare shape sensing results based on the phase demodulation and traditional cross-correlation. 
The experimental results show that the proposed shape sensing method based on phase demodulation has a similar reconstruction 
accuracy compared with the traditional cross-correlation based method, whereas the shape reconstruction speed is improved by nearly 
10 times. 

2. Principle 

A twist compensated, high accuracy and dynamic fiber optic shape sensing technology based on phase demodulation in OFDR 
includes three parts: Differential phase strain demodulation method with phase de-hopping filter, external twist compensation method 
for MFS and calibration method of the inherent spin rate. Firstly, the basic process of the shape sensing technology is briefly 
introduced. 

2.1. Process and principle of shape sensing 

The basic principle of shape sensing is that different core fibers will produce different strain responses when the shape of the shape 
sensing fiber changes, and shape sensing can be realized by demodulating the strain in each core fiber and combining shape recon
struction algorithm. The flow chart of the shape sensing algorithm proposed in this paper is shown in Fig. 1. Three sets of experiments 
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are required to perform shape sensing. The shape sensing fiber is made to be in straight line state, plane bending state and any three- 
dimensional shape, which are used as reference group, calibration group and measurement group, respectively. 

Then we can calculate the strain in each core fiber using the differential phase strain demodulation algorithm, the specific algo
rithm principle is detailed in Section 2.2. The strain of the calibration group is used to get the inherent spin rate information of the 
shape sensing fiber to realize inherent spin compensation. The specific principle is shown in Section 2.4. According to the strain of the 
measurement group, the inherent curvature, bending angle and external twist of the shape sensing fiber can be calculated respectively. 
The calculation formula of the curvature κ and bending angle θb are [22]: 

κ =

2
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where εi represents the strain in these three outer core fibers in the shape sensing fiber, respectively, αi is the angle between each core 
fiber and the x-axis of the reconstructed coordinate, and r is the core spacing of the shape sensing fiber, as shown in Fig. 2. The 
calculation method of external twist subjected to the shape sensing fiber will be explained in detail in Section 2.3. Then we can acquire 
the θb that compensates for the inherent spin and external twist in turn, which reflects the change of direction angle caused by the 
shape. 

The type of the shape sensing fiber we used in this paper is MFS as shown in Fig. 2. The MFS consists of four optical fibers that are 
tightly wound in a spiral as inherent spin, including three peripheral fibers at 120◦ to each other and a central fiber. These four fibers 
are tightly bonded together by epoxy adhesive with a core spacing of 150 μm. Continuous gratings are etched into these fibers to 
enhance Rayleigh backscattering. The difference between this MFS and MCF is that MFS do not have a common cladding and four 
fibers in MFS are independent, so MFS don’t need a fan-in/out to separate these four fiber cores. 

When κ and the compensated θb along MFS are acquired, we can use the shape reconstruction algorithm to reconstruct the three- 
dimensional shape. In this paper, we use the circle segment method for shape reconstruction [12]. Compared with the conventional 
shape reconstruction method based on Frenet-Serret frame, this shape reconstruction method we used has a smaller computational 
burden due to no need for numerical solution of differential equations. At the same time, this method can reconstruct 3D curves with 
zero curvature and singularities namely bending direction changing, which cannot be reconstructed by Frenet-Serret frame based 
method [12]. The basic principle of the algorithm is that the curve is composed of many circle segments with fixed radius, and the 
radius and direction of the circle are calculated according to κ and θb of MFS at that point. By repeating this process for each given set 
(κ,θb), we can reconstruct the entire shape of MFS [10]. In the circle segment method, the length of the circle segment depends on the 
sensing spatial resolution of the system, so a system with a better spatial resolution can acquire higher shape reconstruction accuracy. 

2.2. Principle of differential phase strain demodulation algorithm in OFDR 

We briefly introduce differential phase strain demodulation algorithm in OFDR [19]. A conventional OFDR system is shown in 

Fig. 1. Flow chart of 3D shape reconstruction algorithm.  
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Fig. 3, which is consists of a tunable laser source (TLS) and an interferometer. By launching the light of TLS into the fiber under test 
(FUT), Rayleigh backscattering in FUT will interfere with the light from the local oscillator (LO), which can be detected by a photo- 
detector (PD). When the tuning speed of TLS is γ, the beat signal of position z along FUT can be described as [19]: 

I(t) = 2
̅̅̅̅̅̅̅̅̅̅̅
R(τz)

√
E2

0cos
[

2π
(

ν0τz + γτzt −
1
2

γτ2
z

)

+ φn(t, τz)

]

, (3)  

where E0 is the input optical field of TLS. τz is the time delay at any position z. R(τz) is reflectivity of FUT at position z, γ is the tuning 
rate of TLS, ν0 is the initial frequency, and φn(t, τz) is the phase noise in reference group. Since ν0τz ≫ 1/2γτ2

z , the higher order term can 
be neglected. By FFT of Eq. (3), the corresponding phase term at corresponding position z, which can be expressed as: 

ϕ = 2πν0τz +φn(t, τz). (4) 

When the fiber is stretched or compressed and assuming that the phase noise of the two sets of data before and after the strain is 
applied are strictly equal. The relative phase represents the length change induced by the applied strain in the fiber. The relationship 
between the length change and relative phase is [33]: 

Δϕz =
4π
λ0

[
(1 − Pe)neff ΔLz

]
, (5)  

where Pe is the elasto-optic coefficient, λ0 is the optical wavelength, neff is the effective refractive index, and ΔLz is the corresponding 
length change. By derivative of Eq. (5), we can acquire the relation between distributed strain along FUT and the differential phase dϕ 
is: 

Fig. 2. Structure diagram of multiple single core fiber based sensor (MFS).  

Fig. 3. Schematic diagram of OFDR system.  
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εz =
λ0

4πneff (1 − Pe)
diff (Δϕz) = K ⋅ dϕ. (6) 

It can be seen from Eq. (6) that the strain is proportional to dϕ and its proportional coefficient is K. However, due to the existence of 
phase noise, phase hopping occurs during phase unwrap, which eventually leads to a strain demodulation error. These phase noises 
may be caused by TLS’s linewidth or residual nonlinearity during TLS tuning. Therefore, it is necessary to perform a de-hopping 
filtering to process phase data. In this paper, we propose a phase de-hopping filtering method based on probability distribution. 
The algorithm flow is shown in Fig. 4. By segmenting dϕ and calculating the distance between each data and the median. When the 
distance is greater than the product of the Median Absolute Deviation (MAD) and the threshold value 1.4826, we consider this data 
point to be an outlier, and use the surrounding normal value for interpolation to remove these outliers. The threshold is calculated by 
the normal distribution function. We assume that the data follows a normal distribution X~N(μ,σ2), and the outliers fall in the 50 % 
region on either side, i.e. 

P(|X − μ| ≤ MAD) = P(|
X − μ

σ | ≤
MAD

σ ) = P(|Z| ≤
MAD

σ ) =
1
2

(7)  

Where P(|Z| ≤ MAD
σ ) = Φ(MAD

σ ) − Φ(− MAD
σ ) = 1

2, and P(MAD
σ ) = 1 − P(− MAD

σ ). We convert MAD to a consistent estimator of σ. The threshold 
can be calculated as 1.4826, which is approximately equal to 1/Φ− 1(3/4) = 1/0.67449) [34]. The specific steps of the proposed 
differential phase strain demodulation algorithm are as follows:  

1) Two groups of experiments are carried out in turn, one group of MFS is in a straight-line state, and no strain is applied as a reference. 
In the other group, MFS is in bent state and strain caused by bend is applied on the MFS as the measurement group. The two sets of 
beat signals are transformed into the spatial domain by FFT and their phase spectra are extracted as ϕ1 and ϕ2.  

2) Subtract ϕ1 and ϕ2 to obtain the relative phase Δϕ and take the derivative to calculate the differential phase dϕ.  
3) Segment dϕ along the MFS and any segment of the data is denoted as An, every data point in An is referred to ai separately. And 

calculate the distance between ai and the median of An separately:δi = |ai − median(An)|.  
4) MAD of An is obtained by calculating the median of δi: 

MAD = median(|ai − median(An)| ). (8) 

If δi is greater than 1.4826 × MAD, ai is considered as an outlier and need to be removed.  

5) Use the adjacent normal values to interpolate outliers to remove abnormal data points.  
6) Zero-phase low pass filtering is performed to eliminate high-frequency noise in dϕ. According to the proportional relationship 

between dϕ and strain applied, the distributed strain along each core fiber in MFS is calculated. 

Differential phase strain demodulation algorithm in OFDR above will not reduce the sensing spatial resolution of strain sensing 
because no windowing or smoothing operation is applied, which can reach the theoretical sensing spatial resolution of one data point 
in OFDR. In addition, the calculation burden of phased based strain demodulation is greatly lower than the conventional cross- 
correlation algorithm. We will discuss these in detail in Chapter 3. 

Fig. 4. Flow chart of differential phase strain demodulation algorithm with the phase-hopping filtering in OFDR.  
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2.3. Calibration principle of external twist of MFS 

The twist force applied to MFS will cause the rotation of the outer core fiber, resulting in an error in the calculated θb. In order to 
properly map the strain of the each fiber core of MFS to the corrected bending direction, the external twist applied to MFS must be 
measure. Some scholars have assessed the performance of a spun MCF-based shape sensor in sensing twisting [17,29]. In MCF, strain 
produced only in outer cores and central core does not when MCF is twisted. Therefore, we can calculate the external twist easily from 
the difference between the outer core and central core. However, for MFS, both the central and outer core fiber produce stress when 
MFS is twisted, because they are bonded to each other tightly by epoxy adhesive. Therefore, the external twist calculation methods of 
MCF and MFS are different. 

In order to verify the above conclusion, we experimentally measure the strain in each fiber when MFS is external twisted. The 
external twisting experimental setup is shown in Fig. 5. A part of 0.2 m long MFS is fixed between two optical fiber rotators. During the 
experiment, Rotator A is kept stationary and MFS is rotated clockwise once by Rotator B. The strain distribution signals before and after 
external twisting in each fiber are collected. 

Fig. 6 shows the strain distribution in each core fiber when the MFS is subjected to twist only. From Fig. 6 we know that the central 
and outer core fiber generate reverse strain simultaneously, and the strain of the central fiber is about three times that of the outer 
fiber. This indicates that there is an interaction force between the central and the outer fiber when MFS is applied by an external twist. 
In this way, the axial tension/compression strain (common mode strain εa) applied to the MFS can be calculated from the mean of the 
strain of these four fibers: 

εa =
ε1 + ε2 + ε3 + εc

4
, (9)  

where ε1,ε2 and ε3 represent the strain in three outer core fibers, respectively. εc is the strain applied on the central core fiber. 
To acquire the relationship between external twist and the strain distribution on each fiber of MFS. A segment of full inherent spin 

pitch length of MFS is modeled as a cylinder show in Fig. 7. The length h of the cylinder corresponds to the inherent spin pitch of MFS, 
while the distance from the center core fiber to an outer core fiber represents the radius r of the cylinder. The surface of a cylinder can 
be represented as a rectangle if one slices the cylinder longitudinally and then flattens the surface. The length of the rectangle is h, the 
width is the circumference of the cylinder 2πr, and the diagonal of the rectangle l0 represents the initial length of the outer core fiber. 
When an external twist is loaded on MFS and assumed that the external twist direction is opposite to the initial spiral direction of MFS. 
The outer core fiber will have negative strain due to compression. At the same time, the central fiber will have a positive strain and be 
stretched due to the close contact between the outer and central core fibers. The stretch length of the center core fiber is εch, then the 
strain generated by external twist in the outer fiber εtwist is: 

εtwist =
l − l0

l0
≈

l2 − l2
0

2l2
0

=
(h + εch)2

+ (2πr − εth)2
− (2πr)2

− h2

2(4π2r2 + h2)
,

(10)  

where l represents the length of the outer core fiber subjected to external twist, εt = γtr indicates the tangential strain on MFS, γt is the 
external twist rate to MFS. We assume γ0 is inherent spin rate of MFS and submit h = 2π

γ0 
into Eq. (10) and simplify Eq. (10) to get: 

εtwist =
ε2

c + 2εc − 2γ0γtr2 + γ2
t r2

2(1 + γ2
0r2)

. (11) 

Since γt is usually much smaller than γ0. The term γ2
t r2 is minuteness to be neglected compare to 2γ0γr2. Since εc and r are both small, 

γ2
0r2 ≪ 1 and ε2

c ≪ 2εc. Then Eq. (11) can be approximated linearly as: 

γt = −
εtwist − εc

γ0r2 . (12) 

From Eq. (12), a large r and γ0 will lead to a high measurement accuracy of γt. The outer fiber is subjected to external twist, bending 

Rotator A Rotator B

0.2 m

MFS

 

Fig. 5. Experimental setup of external twisting loaded on the MFS.  
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and tensile strain at the same time and the sum of the bending strain of the three outer fibers is zero. Therefore, the strain caused by 
external twist on MFS can be calculated as: 

εtwist =
ε1 + ε2 + ε3

3
− εa. (13) 

Combined with Eq. (9), (12) and (13), γt along MFS can be calculated. Then the effect of twist on the shape reconstruction can be 
compensated by applying the superposition principle and correcting the bending direction angle in each instrumented section ac
cording to Eq. (14): 

θ′
b = θb −

∫ s

0
γtds. (14)  

Fig. 6. Strain distribution of each fiber when MFS is subjected to external twist.  

Fig. 7. Outer fiber that experiences external twist can be modeled as a flattened cylinder and unfolded into a rectangle.  

Fig. 8. Strain distribution curve of each fiber at different positions of MFS. The variation of the period of the strain distribution curve indicates that 
the inherent spin rate fluctuates along the MFS. 
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2.4. Calibration principle of inherent spin rate of MFS 

To translate strain signals from the outer core fibers in to bend direction, the rotational position of an outer core fiber must be 
determined with a high degree of accuracy. In addition to the external twist will affect the rotation direction of the outer fiber, γ0 of 
MFS is also an important parameter for calculating the bending direction of MFS. Assuming that γ0 of MFS is constant, the αi of the 
outer fibers varies linearly along the distance of the MFS. However, in practice, the fabrication of MFS introduces some variation in γ0. 
Fig. 8 shows the strain response in each fiber at two different positions when MFS is bent. We intuitively find that these periods of strain 
distribution curve are different along MFS due to changes in γ0 along MFS. This causes that the αi of the outer fibers to deviate from a 
desired linear change brought about by changes in γ0, which greatly affects the shape sensing accuracy. Therefore, we propose a 
method to calibrate and compensate the fluctuation of inherent spin rate of MFS. 

When MFS is continuously bent without twist in a single plane, θb can be calculated according to Eq. (2). Since there is no twist and 
three-dimensional distortion, θb reflects the rotational position of an outer fiber. That is the change of the inherent spin angle θ0 of 
MFS. And γ0 is the derivative of the θ0 as 

γ0 = diff (θ0). (15) 

Since θ0 is the inherent parameter of MFS, once calibrate the θ0 along the fiber, its effects can be compensated by calculating θb in 
each cross-section according to Eq. (16). 

Fig. 9. Experiment setup of OFDR-based four-channels shape sensing system.  
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θb = arctan

⎛

⎝

∑3
i=1

εi
r sin(αi − θ0)

∑3
i=1

εi
r cos(αi − θ0)

⎞

⎠. (16)  

3. Experimental results and discussion 

3.1. Experimental setup for shape sensing 

Distributed 3D shape sensing system based on OFDR is shown in Fig. 9. The system is mainly composed of tunable laser (TLS, TLB- 
8800H, Newport Inc.), four-channels high-speed data acquisition card (DAQ, CSE1442, GaGe Inc.), auxiliary interferometer, four- 
channels main interferometer and MFS (3D_MF_G3A6-1.25, TSSC Inc.). The MFS consists of four continuous grating fibers that are 
tightly wound in a spiral, including three peripheral fibers at 120◦ to each other and a central fiber. MFS has a core spacing of 150 μm, a 
coating diameter of 455 μm and an inherent spin rate of 628 rad/m. The grating length of each core fiber is 10 mm. The grating spacing 
is 0.5 mm. The grating center wavelength is 1546 nm. The length of MFS is 1.2 m. MFS with continuous gratings can enhance signal to 
noise ratio (SNR) of Rayleigh scattering and improve the accuracy of shape sensing [16]. 

In the experimental setup, the test ends of the four-channels main interferometer are connected with the four core fibers of MFS, 
respectively. The light emitted from TLS is divided into two paths by a 1:99 fiber coupler. 1 % of the light enters the auxiliary 
interferometer, and passes through the circulator and 50:50 coupler to enter the reference arm and measuring arm of the auxiliary 
interferometer, respectively. A beat signal is generated at 50:50 coupler after reflection by two Faraday rotating mirrors (FRM). The 
beat signal is converted into an electrical signal by the Balanced Photodetector (BPD, PDB450C, Thorlabs Inc.) to provide an external 
clock for DAQ. The function of the clock trigger signal (f-clock) is to sample the beat signal of the main interferometer output at an 
equal optical frequency interval to compensate for the nonlinear tuning of TLS. 99 % of the light is divided into four channels after 
passes through a polarization controller (PC) and three 50:50 couplers, corresponding to the four core fibers of MFS. Each main 
interferometer is composed of 20:80 coupler, 50:50 coupler, reference arm and measuring arm. The optical signal of the measuring arm 
passes through the circulator and enters the core fiber of MFS. A beat interference occurs between Rayleigh backscattering returned in 
the core fiber of MFS and the reference light occurs in the 50:50 coupler. DAQ connect BPDs in these four channels of the main 
interferometer for analog-to-digital converting. 

In the experiment, the tuning rate of TLS is γ = 1500 nm/s and the turning range is 18 nm from 1540 to 1558 nm, which corre
sponds to a total tuning time of 12 ms. The length of delay fiber of the auxiliary interferometer is 20.5 m so that the sampling rate and 
the spatial resolution of single data point are 37.5 M/s and 45 μm, respectively. The total length of the optical fiber under test is 5.8 m, 
and the length of the MFS under test is 1.1 m. 

3.2. Calibration of inherent spin rate and coefficient between strain and differential phase 

First, we need to conduct a set of calibration experiments to calibration initial spin rate of MFS and coefficient between strain and 
differential phase K. we collect a set of linear state data as a reference group, and make sure that MFS is in a natural state and there is no 
strain in MFS as far as possible. Then we place MFS in a single plane with a known radius and bend it continuously as a calibration 
group. The bending of MFS results in a periodic strain in the outer core fiber. The principle of strain demodulation in MFS is as 
described in Section 2.2. We demonstrate the process of differential phase strain demodulation in OFDR by taking one of outer fibers in 

Fig. 10. Strain demodulation process. (a) Relative phase diagram. (b) Unwrapped relative phase diagram. (c) Local phase unwrapping diagram at 
the position of 0.62 m to 0.72 m. (d) Differential phase with outliers at the position of 0.62 m to 0.72 m. (e) Outliers removed differential phase 
using phase de-hopping filter. (f) Difference phase result after denoising at the position of 0.62 m to 0.72 m. 
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MFS as an example. Fig. 10 (a) shows the relative phase between the reference group and the calibration group. We find that the 
relative phase curve appears periodic due to the presence of the inherent spin of MFS. Phase unwrapping is performed on the data in 
Fig. 10 (a) to obtain the cumulative phase, as shown in Fig. 10 (b). In order to show the signal change process more clearly, we only 
show the results at the position of 0.62 m to 0.72 m in the subsequent processing. Fig. 10 (c) shows the local phase unwrapping diagram 
at the position of 0.62 m to 0.72 m. We can see from Fig. 10 (c) that there are some phase-hopping points due to TLS noise, which we 
can see more clearly by differentiating Fig. 10 (c) to get differential 2.2 to filter the outliers, the result is shown in Fig. 10 (e). It can be 
seen that Fig. 10 (e) still contains a lot of high-frequency noise that needs to be filtered. The experimental results after a phase low-pass 
filter for filtering are shown in Fig. 10 (f). The strain demodulation process of the measurement group is the same as that of the 
reference group and is not shown here. 

Since MFS is continuously bent in a single plane, the theoretical θb should be a constant without the inherent spin of MFS. However, 
due to the existence of the inherent spin of MFS, θb will change constantly. Therefore, θb calculated by Eq. (2) is the inherent spin angle 
θ0 of MFS when MFS is continuously bent on a single plane. And the γ0 along MFS can be obtained by Eq.(15), as shown in Fig. 11. We 
find that γ0 of MFS gradually increases from the starting point with a nominal value of 628 rad/m and γ0 fluctuates slightly around the 
nominal value. 

By bending MFS into a circle with a known radius, we can also calibrate the proportional coefficient between strain and differential 
phase K. The calibration method is to carry out the shape reconstruction experiment on the calibration group, and make the radius of 
the reconstructed circle consistent with the standard radius by constantly adjusting K. In the calibration group, the MFS is wound on a 
standard circular mold with a radius of 0.096 m, as shown in Fig. 12 (a). The shape reconstruction results are shown in Fig. 12 (b) and 
(c), and the final calibration K = 2515 με/rad. 

3.3. External twist compensation and shape reconstruction 

In this section, we will perform 3D shape reconstruction experiments to verify the proposed external twist and inherent spin rate 
compensation methods. After calibrating θ0 and K, we can bend MFS into a complex 3D shape and collect data as a measurement group. 
We use circle segment algorithm to reconstruct the shape. According to the spatial resolution of the system, the length of each micro- 
segment is 45 μm, and the entire MFS with a 1.1 m length is divided into 24,444 segments. The experiment is carried out on a standard 
optical platform, which is convenient to determine the position coordinates of each point and calculate the shape reconstruction errors. 
In experiments, we use 3D printing technology to manufacture a cylindrical mold with standard spiral grooves. As shown in Fig. 13 (a), 
the diameter of the mold is 0.1 m and the height of the mold is 0.125 m. The mold is placed upside down on the X axis and 0.24 m away 
from the Y axis. We place MFS into the groove on the mold shown in Fig. 13 (a) and ensure that the end of MFS is at the highest point of 
the cylindrical mold. In this way, the position coordinates of the end of MFS can be determined as (0.240 m, 0.125 m, 0.100 m). The 
specific shape reconstruction steps and experimental results are as follows:  

1) Use the differential phase strain demodulation algorithm in Section 2.2 to calculate the strain in each core fiber according to the 
data of the measurement group and the reference group.  

2) Calculate the initial curvature κ along MFS according to Eq. (1). And use Eq. (16) to calculate θb after the inherent spin 
compensation according to the calibration results of θ0.  

3) Use Eq. (9), (12) and (13) to calculate γt of MFS, and Eq. (14) is used to compensate the external twist of MFS to acquire the 
compensated θb.  

4) According to κ and θb, the shape reconstruction algorithm based on the circle segment [10] is used to reconstruct the shape. 

The shape reconstruction results are shown in Fig. 13. Fig. 13 (b) is the three-dimensional curve of the shape reconstruction result, 
where the dashed line represents the standard curve, which is obtained by fitting multiple actual coordinate points. Fig. 13 (c), (d) and 

Fig. 11. Inherent spin rate varies along MFS.  
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(e) show the Y-Z, X-Z, and X-Y view respectively. We find that the reconstructed curve has a high consistency with the standard curve, 
which indicates that the proposed shape reconstruction method has a high sensing accuracy. 

In order to quantitatively calculate the reconstruction error of the curve, we calculate the reconstruction error between the 
reconstructed curve and the standard curve every 5 mm along MFS. The reconstruction error is usually expressed by Euclidean distance 
error, which can be expressed as: 

Ei =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − x0
i )

2
+ (yi − y0

i )
2
+ (zi − z0

i )
2

√

, (17)  

where (xi, yi, zi) and (x0
i , y0

i , z0
i ) represent the coordinates of the reconstructed curve and the standard curve at a certain position, 

respectively. The Euclidean distance error curve along MFS is shown in Fig. 14. We take the maximum value on the curve as the 
maximum reconstruction error of the experiment. We find that the maximum reconstruction error occurs near the end of MFS, and the 
maximum reconstruction error is 6.7 mm, corresponding to a relative reconstruction error is 0.61 %. 

In order to demonstrate the necessity of external twist and inherent spin rate compensation, 3D shape reconstruction experiments 
are carried out without external twist and inherent spin compensation, respectively. The experimental results are shown in Fig. 15 and 

Fig. 12. Scale coefficient calibration experiment between differential phase and strain. (a) Actual diagram of fiber wound on a standard circular 
mold with a radius of 0.096 m. (b) Reconstructed curve of a circle in 3D graph. (c) A top view of the reconstructed curve of a circle with a diameter 
of 0.192 m. 

(0.240, 0.125, 0.100)

(0, 0, 0)

(a) (b)

(d)

(c)

(e)

Y-Z

X-Z X-Y

Fig. 13. Complex 3D shape reconstruction result. (a) Actual diagram of 3D curve reconstruction experiment, the distance between the two holes of 
the optical platform is 25 mm. (b) Reconstruct the 3D graph. (c) 2D view of curves in Y-O-Z plane. (d) 2D view of curves in X-O-Z plane. (e) 2D view 
of curves in X-O-Y plane. 

S. Li et al.                                                                                                                                                                                                               



Mechanical Systems and Signal Processing 216 (2024) 111462

12

Fig. 16. Fig. 15 shows the shape reconstruction results of MFS without external twist compensation. A comparison between the 
reconstructed three-dimensional curve and the standard curve is shown in Fig. 15 (a). Fig. 15 (b) is the Euclidean distance error curve 
along MFS. Similarly, we take the maximum Euclidean distance error along MFS as the reconstruction error of this experiment. It can 
be seen that the reconstruction error without external twist compensation is very large, the maximum reconstruction error is 129 mm, 
and the corresponding relative error reaches 11.7 %. The reconstruction accuracy after external twist compensation is 0.61 %, which 
increases more than 18 times compared with that before external twist compensation. 

Fig. 16 shows the experimental results without inherent spin rate calibration. A comparison between the reconstructed three- 

Fig. 14. Euclidean distance error curve along MFS when the shape in Fig. 12 is reconstructed.  
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Fig. 15. Shape reconstruction results without external twist calibration. (a) Reconstructed curve without external twist compensation. (b) Euclidean 
distance error along MFS without external twist compensation. 
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Fig. 16. Shape reconstruction results without inherent spin calibration. (a) Reconstructed curve without inherent spin compensation. (b) Euclidean 
distance error along MFS without inherent spin compensation. 
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dimensional curve and the standard curve is shown in Fig. 16 (a). Fig. 16 (b) is the Euclidean distance error curve along MFS. We find 
that the reconstruction error is also very large without inherent spin compensation, the maximum reconstruction error is 140 mm, 
corresponding to the relative error is 12.7 %. The reconstruction accuracy after inherent spin compensation is 0.61 %, which increases 
more than 20 times compared with that before inherent spin compensation. These two sets of experiments above show that external 
twist and the fluctuation of the inherent spin rate of MFS have a great influence on the shape reconstruction results, which must be 
compensated by the proposed method. 

3.4. Comparison between shape sensing algorithm based on phase demodulation and cross-correlation demodulation 

In order to prove that the proposed shape sensing algorithm based on phase strain demodulation has the advantages of high speed 
and high precision, we compare the proposed method with the traditional shape sensing algorithm based on cross-correlation strain 
demodulation in terms of demodulation accuracy and demodulation speed. In the comparison experiment of shape reconstruction 
accuracy, we use the same data to reconstruct a shape using these two algorithms, respectively. We compare the reconstructed curve 
with the standard curve and calculate their Euclidean distance errors along MFS. The experimental results are shown in Fig. 17. We 
find that these two shape reconstruction algorithms based on differential phase and cross-correlation have a similar shape recon
struction accuracy, and their maximum reconstruction errors are 6.7 mm and 6.2 mm, respectively, corresponding to the relative errors 
are 0.61 % and 0.56 %. The difference is so small that it is almost negligible in practice. In this experiment, we carry out a shape 
reconstruction with continuous frames. The time consumption on 1, 5, 10, 15 and 20 frames of shape reconstructions by the two 
methods are counted and the bar char is drawn in Fig. 18. We calculate the average completion time of 20 times shape reconstruction 
by these two methods. We find that the average time spent of the shape reconstruction method based on differential phase is only 104 
ms, corresponding to the frame rate of about 10 Hz. In contrast, the average time of the cross-correlation based shape reconstruction 
method to complete a shape reconstruction is 940 ms, and its frame rate is only 1 Hz. Therefore, when the hardware is exactly the same, 
the speed of the proposed shape reconstruction algorithm is nearly 10 times higher than that of the traditional shape reconstruction 
algorithm based on cross-correlation. In fact, the frame rate of the proposed shape reconstruction algorithm in this paper can be further 
improved if FPGA or DSP is used for programming in the future. This is of great significance to the practical application of shape sensor. 

4. Conclusion 

In conclusion, we present a twist compensated, high accuracy and dynamic fiber optic shape sensing based on phase demodulation 
in OFDR. Firstly, a phase de-hopping filtering differential phase strain demodulation method is proposed and applied to shape sensing, 
which greatly improves the demodulation rate of shape sensing, and the spatial resolution reaches 45 μm. In addition, in order to 
eliminate the influence of external twist and fluctuation of inherent spin on the shape reconstruction results, we proposed an external 
twist compensation method and inherent spin rate calibration method, which greatly improved the shape measurement accuracy. The 
experimental results show that the reconstruction accuracies by the proposed external twist compensation and inherent spin rate 
calibration methods increase over 18 times and 20 times than those without these two methods respectively. By comparing with the 
traditional cross-correlation-based method, we find that the proposed shape sensing method based on phase demodulation has a 
similar reconstruction accuracy, the maximum reconstruction error is 0.61 %, whereas the shape reconstruction speed is improved by 
nearly 10 times. 
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